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ABSTRACT: Emittance growth due to noise from a transverse beam feedback

system are discussed. A theory for calculating emittance growth rate as a function

of the feedback system's measured open loop transfer function is derived. A simple

feedback system was installed, measured, and tested in the Fermilab Tevatron, and

the emittance growth rate results agree very closely with the theory.
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INTRODUCTION

As particle densities in accelerators and storage rings increase, instabilities arise that

dilute emittance or, at worst, actually drive the beam out of the machine. Beam feedback

systems can extend the intensity threshold of these instabilities. These systems have

pushed the intensity limits of many accelerators beyond their design intensity and have

become a necessity for present day operation.

For most beam feedback applications, the dominant design speci�cation is the system

gain required to counteract the instability growth rate. This gain is predominantly limited

by the delay and dynamic range of the system. A secondary but signi�cant design speci-

�cation is the amount of noise power that is deposited in the beam. This noise will cause

emittance growth over time periods on the order of minutes unless there is some other

damping mechanism such as synchrotron radiation. Noise will have a minimal e�ect on

fast cycling machines, but it could have a devastating e�ect on hadron storage rings that

must maintain high luminosity.

Instrumentation for measuring feedback system response functions has become increas-

ingly powerful in the last four years, and feedback designers have taken advantage of this

when designing new feedback systems for existing machines. By measuring the system

response at low beam intensity, the stability of the system at higher intensities can be

extrapolated. The theory and application of this technique are well documented.

This paper documents the extrapolation of noise properties of the feedback system

from the system response measurements. First, a theory for determining relative emittance

growth rate as a function of the system response is derived. Second, the theory is tested in

the Fermilab Tevatron storage ring. The paper will show how the measured relative growth

rates compare between feedback loops open and closed, and it will show how closely these

rates compare with theory.
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THEORY

In this section, we will derive the relative growth rates of the emittance of the beam

when the damper loop is open and when it is closed given its open loop response function

G(!)H(!). Referring to Figure 1(a), if the response function in the time domain is h(t) =

u(t)�h(t) where u(t) is the unit step function, then the output yout from noise n(t) is simply

the convolution
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where we have used n(t) = 0 if t < 0. Then the mean squared growth hy2outi is simply
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where S(!) is the spectral power density function. S(!) is de�ned to be
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and it can be shown (refer to reference 1) that
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For Figure 1(b), when there is a gain element G(!) in the system, we can use (3) and

Parseval's theorem to show that
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Finally for Figure 1(c), when we close the loop,

G(!)!
1
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(6)
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and thus
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If the observed growth rate when t is large is dominated by the linear part of hyopeni
2 then
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where slope[:] is de�ned to be the slope of the function for large t. Similarly
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If we assume S(!) = constant and G(!) = g, where g is independent of !, then the relative

growth is
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Equation (11) is the equation which we will use to �t the measured data shown in the next

section.
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EXPERIMENT

The simpli�ed block diagram of our narrow band damper system is shown in Figure 2.

This block diagram is an example of the system shown in Figure 1(c), Thus, we can use

the previously discussed theoretical results to analyze the experimental data.

When G is set to zero and only noise is fed into the beam at 150 GeV, we see that

the vertical beam size grows as expected. This is shown in Figure 3. In fact the growth of

hy2closedijG=0 is linear as shown in Figure 4. Now, when the loop is closed and G � 5:5 at

18:327 kHz, the growth rate is reduced by a factor of 3 from (0:71� 0:05)� 10�3 mm2s�1

to (0:24� 0:05)� 10�3 mm2s�1.

We plot the measured relative growth rates and the theoretical relative growth rates

in Figure 5. The theoretical growth rate was calculated using (11) with the measured

G(!)H(!) shown in Figure 6. It is important to notice that there are no free parameters

in the theory, i.e. the theory is not �tted to the data. The goodness of �t criteria is given

by
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where � = N � 1 and N is the number of data points. Using (12), the goodness of �t of

our theory to the measured data is 1:3. According to Bevington4 �2� should be about 1

and less than 1:5 for a good �t. Therefore, using Bevington's criterion, we conclude that

our theory is a good �t to the observations. As a comparison, we also show in this plot

a linear least squares �t constrained to pass through (0; 1) of the data. The linear least

squares plot has a �2� � 3.

Finally the measured absolute growth rate when the loop is open versus the spec-

tral power density is shown in Figure 7. We see that the the growth rate is linear w.r.t. spec-

tral power density. The least squares �t gives the emittance growth rate per spectral power
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density to be (0:55�10�2)� (mm�mrad�s�1)/(W/kHz) or 19:8� (mm�mrad�hr�1)/(W/kHz)

over the narrow band of 2 kHz which encloses all the tune lines centred about 18:847 kHz.

Using this number and assuming that the maximum emittance growth rate is 0:2�mm�mrad

�hr�1 allowed in the Tevatron, then the maximum noise density that we can have in the

narrow band damper system is 10 mW/kHz. For a broadband system of 10 MHz, we have

approximately 425 tune bands in this bandwidth, then the maximum noise density that we

can allow in the broadband system is 24 �W/kHz if we assume that each band contributes

linearly to the growth rate.

CONCLUSION

We have demonstrated how we can calculate the growth rate when we are given the

open loop response. This observed relative growth rate agrees with the theoretical relative

growth rate. Therefore, if we are given the open loop response of the damper system, we

can calculate what the expected growth rate of the beam. Finally, from our measurements

of the absolute growth rate we can put an upper limit on the noise density that we are

allowed for the damper design.
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Figure 1 Here are the three systems that will be considered in this

section: (a) The beam only system where the growth rate is linear

w.r.t. time. (b) The beam with noise after going through G which we

call gain. However, this gain is really the frequency response of the

electronics and is represented here as a general linear, time-invariant

system. (c) The system when we close the loop. In this case, we add

the noise after G, but in practice, we can add in the noise at any other

point and do a similar analysis.
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Figure 2 This �gure shows a simpli�ed block diagram of our narrow

band damper. We de�ne G to be pure gain and everything else is in

H. We can compare this block diagram to Figure 1(c) to see that

they are the same system.
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Figure 3 This graph shows how the vertical beam size typically

grows when a noisy vertical kicker is used to excite the beam. In

this case, the noise density S0 = 1:25 W/kHz between 17:417 kHz

and 19:417 kHz. The three lines that are shown are (a) the beam

current (IBEAM) in units of 1012 particles, (b) vertical beam size

sigma (FWVSIG) in units of mm and (c) horizontal beam size sigma

(FWHSIG) in units of mm. The horizontal scale is in seconds. The

steps which are shown in FWHSIG and FWVSIG is from taking data

once every 15 seconds.
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Figure 4 This �gure shows the result of processing the raw data

shown in Figure 3 after going through our �tting routine which cor-

rects for the beam current decay. It is clear from here that the growth

rate is linear which satis�es the condition required in the theory. At

1.25 W/kHz, the growth rate is (0:71� 0:05)� 10�3 mm2s�1. When

the loop is closed, the growth rate is reduced by a factor of 3 to

(0:24 � 0:05) � 10�3 mm2s�1. Again, there are steps shown in the

processed data because data is taken only once every 15 seconds.
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Figure 5 The measured relative growth rate versus the relative gain

is shown in the top graph. The theoretical curve is calculated using

the the open loop response shown in Figure 6. A linear least squares �t

of the data which must pass through the point (0; 1) is superimposed

for comparison.
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Figure 6 This is the measured open loop response of the system

i.e. G(!)H(!).
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Figure 7 The absolute growth rate at 150 GeV when the loop is

open versus the spectral power density is linear. The noise bandwidth

is �xed at 2 kHz centred about 18:847 kHz. The least squares �t is

dhy2i=dt = (0:52�10�3)S (mm2s�1). The vertical emittance is calcu-

lated using d�y=dt = �6
(dhy2i=dt)=�y = �10:57dhy2i=dtmm�mrad�s�1

with 
 = 159:9 and �y = 90:8 m.
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